Multiscale methods and model order reduction for flow problems in three-scale porous media

نویسندگان

  • Assyr Abdulle
  • Ondrej Budáč
  • Antoine Imboden
چکیده

A new multiscale method combined with model order reduction is proposed for flow problems in three-scale porous media. We derive an effective three-scale model that couples a macroscopic Darcy equation, a mesoscopic Stokes-Brinkman equation, and a microscopic Stokes equation. A corresponding three-scale numerical method is then derived using the finite element discretization with numerical quadrature, where the macroscopic and mesoscopic permeability is upscaled at quadrature points from mesoscopic and microscopic problems, respectively. The computational cost of solving numerous mesoscopic and microscopic flow problems is further reduced by applying a Petrov– Galerkin reduced basis method at the mesocopic and microscopic scales. As there is no natural way to obtain an affine decomposition of the mesoscopic problems, which is instrumental for the efficiency of the model order reduction, we derive a mesoscopic solver that makes use of empirical interpolation techniques. A priori and a posteriori error estimates are derived for the new method that is also tested numerically to corroborate the theoretical convergence rates and illustrate its efficiency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiscale Model Reduction Methods for Flow in Heterogeneous Porous Media

In this paper we provide a general framework for model reduction methods applied to fluid flow in porous media. Using reduced basis and numerical homogenization techniques we show that the complexity of the numerical approximation of Stokes flow in heterogeneous media can be drastically reduced. The use of such a computational framework is illustrated at several model problems such as two and t...

متن کامل

Multiscale Multiphysic Mixed Geomechanical Model for Deformable Porous Media Considering the Effects of Surrounding Area

Porous media of hydro-carbon reservoirs is influenced from several scales. Effective scales of fluid phases and solid phase are different. To reduce calculations in simulating porous hydro-carbon reservoirs, each physical phenomenon should be assisted in the range of its effective scale. The simulating with fine scale in a multiple physics hydro-carbon media exceeds the current computational ca...

متن کامل

A Discontinuous Galerkin Reduced Basis Numerical Homogenization Method for Fluid Flow in Porous Media

We present a new conservative multiscale method for Stokes flow in heterogeneous porous media. The method couples a discontinuous Galerkin finite element method (DG-FEM) at the macroscopic scale for the solution of an effective Darcy equation with a Stokes solver at the pore scale to recover effective permeabilities at macroscopic quadrature points. To avoid costly computation of numerous Stoke...

متن کامل

An Adaptive Multiscale Method for Simulation of Fluid Flow in Heterogeneous Porous Media

Several multiscale methods for elliptic problems that provide high resolution velocity fields at low computational cost have been applied to porous media flow problems. However, to achieve enhanced accuracy in the flow simulation, the numerical scheme for modeling the transport must account for the fine scale structures in the velocity field. To solve the transport equation on the fine scale wi...

متن کامل

On the performance of the variational multiscale formulation for subsurface flow and transport in heterogeneous porous media

The following work compares two popular mixed finite elements used to model subsurface flow and transport in heterogeneous porous media; the lowest order Raviart-Thomas element and the variational multiscale stabilized element. Comparison is made based on performance for several problems of engineering relevance that involve highly heterogenous material properties (permeability ratios of up to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016